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Abstract. The phase diagram of two coupled anisotropic spin-1/2 Heisenberg chains forming
a ladder is studied via the finite-size machinery arising from conformal invariance. Our results
show that this system has similar behaviour to the anisotropic spin-1 Heisenberg chain. Both
models for low values of anisotropies have a massless phase of Gaussian type, governed by a
c = 1 conformal field theory. The operator that destroys the massless phase in these models is
the same as in the Gaussian picture. We also verify that the massive phase in the anisotropic
Heisenberg ladder has the same type of nonlocal order as that in the spin-1 Heisenberg chain.

The experimental study of materials such as(VO)2P2O7 [1] and Sr2Cu4O6 [2] suggested that
the magnetic properties of such compounds are described by two coupled antiferromagnetic
spin-1/2 Heisenberg chains. This observation motivated several studies of the spectral
properties of spin-1/2 antiferromagnetic ladders [3–13]. These studies indicate that for an
even number of legs the isotropic model has a gap, while for an odd number the model
remains gapless as in the isotropic Heisenberg chain. A similar behaviour happens in the
spin-S antiferromagnetic chain. According to the Haldane conjecture [14–16], for integral
spin the chain has a gap and for half-odd-integer spin the chain is gapless. These facts lead
to the conjecture that the antiferromagnetic Heisenberg ladders with an even number of legs
are described by an effective antiferromagnetic Heisenberg chain with integer spin.

Recently, by introducing additional interactions in the isotropic Heisenberg ladder with
two legs, White [12] showed numerically that the isotropic spin-1 Heisenberg chain and
the ladder belong to the same phase in an extended phase diagram. Motivated by these
results we decided to study such models by using the machinery arising from conformal
field theory in two dimensions.

As is well known [17–19], the conformal anomaly and dimensions of operators
governing the underlying field theory can be calculated by exploiting a set of important
relations between these quantities and the energy spectrum of the Hamiltonian with a finite
number,L, of sites. These relations are consequences (see Cardy [17] for a review) of the
conformal invariance of the infinite system at a critical point. The relevant relations, for our
purposes, may be stated as follows. For each primary operator [17]Oα, with anomalous
dimensionxα and spinsα, in the operator algebra of the massless infinite chain, there exists
an infinite tower of states in the quantum Hamiltonian, in a periodic chain ofL sites, whose
energy and momentum asL→∞ are given by

Eαj,j ′(L) = E0(L)+ 2πv

L
(xα + j + j ′)+ o(L−1) (1)

0953-8984/97/143055+09$19.50c© 1997 IOP Publishing Ltd 3055



3056 F C Alcaraz and A L Malvezzi

and

Pαj,j ′(L) =
2π

L
(sα + j − j ′) (2)

wherej, j ′ = 0, 1, 2, . . .. The ground-state energy of the finite chain is denoted byE0(L)

and the constantv (model dependent) is the velocity of sound. In addition to these relations,
conformal invariance also predicts [18, 19] that, at criticality, theL-site ground-state energy
E0(L), in a periodic chain, behaves asymptotically as

E0(L)

L
= e∞ − πcv

6L2
+ o(L−2). (3)

Herec is the central charge of the conformal class governing the critical behaviour ande∞
is the bulk limit (L→∞) of the ground-state energy per particle.

The isotropic spin-1/2 Heisenberg ladder is expected to be massive (gapped) [5, 9, 10,
12, 13]. In order to better understand the underlying physics, previous experience [20–22]
in conformal invariance studies of finite Heisenberg chains indicates that it should be better
to consider an anisotropic version of the model with the Hamiltonian given by

H = H‖ +H⊥ (4)

where

H‖ = J‖
L∑
i=1

2∑
j=1

(Sxi,j S
x
i+1,j + Syi,j Syi+1,j +1Szi,j Szi+1,j ) (5)

H⊥ = J⊥
L∑
i=1

(Sxi,1S
x
i,2+ Syi,1Syi,2+1Szi,1Szi,2). (6)

The horizontal and vertical exchange constants are given byJ‖ andJ⊥ respectively,1 is the
anisotropy and(Sx, Sy, Sz) are the SU(2) spin-1/2 matrices. In the following we consider
periodic lattices withJ‖ = 1.

Let us consider initially the case whereJ⊥ = 0, where we have two decoupled aniso-
tropic HeisenbergS = 1/2 chains. These single chains are massive for|1| > 1 with anti-
ferromagnetic or ferromagnetic order depending on whether1 > 1 or1 < 1, respectively.
For−16 1 6 1 they are in a disordered critical phase (gapless), with critical fluctuations
governed by a U(1) conformal field theory with central chargec = 1 (see, e.g., references
[23–27]). The anomalous dimensions of the operators (related to the critical exponents)
ruling the massless phase are given by integers or by the Gaussian-like dimensions [28]

xn,m = n2xp + m2

4xp
n,m = 0,±1,±2, . . . (7)

wherexp = (π − cos−1(1))/2π . These correspond, in the Gaussian model [29, 30], to the
dimensions of the operatorsOn,m composed of a spin-wave excitation with indexn and a
‘vortex’ excitation of vorticitym.

At J⊥ = 0 the eigenspectra of (4) are obtained by adding the energies of two decoupled
Heisenberg chains, which havec = 1 and dimensions given by (7). The relations (1), (2)
and (3) imply that the underlying conformal field theory has conformal chargec = 2 and
operators with dimensions given either by integers,xn,m, or xn,m + xn′,m′ (n,m, n′, m′ =
0,±1,±2, . . .).

When we now perturb the decoupled chains by turning onJ⊥ > 0, the problem is to
know which among the above dimensions will be associated with the operator responsible
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for such perturbation. Since this perturbation does not destroy the whole U(1) symmetry
of the decoupled chain,

[H‖, Sz] = [H‖ +H⊥, Sz] = 0 Sz =
L∑
i=1

2∑
j=1

Szi,j (8)

we expect, from the Gaussian model analogue, that such an operator should have zero
spin-wave number index (n = 0). Moreover, from the previous work [5, 9, 10, 12], at
1 = 1, the ladder is expected to be massive for small values ofJ⊥, which implies that
the perturbing operator should become relevant at some point in the interval−1 6 1 6 1
since at1 = 1 the perturbation destroys the massless phase. The possible dimensions
satisfying such requirements arex0,1, which is relevant for1 > −√2/2, and 2x0,1, which
is relevant for1 > 0. A possible way to test such possibilities comes from the analysis of
the underlying field theory in the massive phase at aroundJ⊥ = 0.

The mass spectrum can be inferred by applying the scheme followed by Sagdeev and
Zamolodchikov [31] in the study of the Ising model in an external magnetic field. To do
such calculations we should initially find the finite-size corrections of the zero-momenta
eigenenergiesEk(J⊥,1,L) (k = 0, 1, 2, . . .) (E0 being the ground-state energy), at the
conformal invariant lineJ⊥ = 0. In the case of the decoupled chains the results of references
[23, 24] tell us that such corrections, for arbitrary values of1 (−16 1 6 1), are governed
mainly by the irrelevant operator with dimensionx̄ = x0,2 = 1/xp and the descendant of
the identity operator with dimension 4. From references [23, 24] we have

Ek(J⊥ = 0,1,L) = e∞L+ 2πv

L

(
xk − c

12

)
+ a1

(
1

L

)3

+ a2

(
1

L

)x̄−1

+ a3

(
1

L

)2x̄−3

+ a4

(
1

L

)3x̄−5

+ · · · (9)

wherexk is one of the dimensions (7) associated withEk, anda1, a2, . . . areL-independent
factors; alsov = π sin(γ )/γ, whereγ = cos−1(1). According to the scheme of reference
[31], if the perturbed operator which produces the massive behaviour has dimensiony, we
should calculate the eigenspectra in the asymptotic regimeJ⊥ → 0, L→∞, with

X = J 1/(2−y)
⊥ L (10)

kept fixed. In this regime (9) is replaced by

Ek(J⊥, L) = e∞L+ J 1/(2−y)
⊥ Fk(X)+ J (x̄−1)/(2−y)

⊥ Gk(X)

+ J (2x̄−3)/(2−y)
⊥ Vk(X)+ J (3x̄−5)/(2−y)

⊥ Hk(X)+ · · · . (11)

The masses of the continuum field theory are obtained from the large-X behaviour of the
function [31]Fk(X), i.e.,

mk ∼ Fk(X)− F0(X). (12)

Diagonalizing the ladder Hamiltonian (4) for lattice sizes up toL = 12 (24 sites), and
using in (11)y = 2x0,1, our numerical analysis indicates a massive phase for1 > 0. In
table 1 we show, for the sake of illustration, for two values of1, the finite-size estimates
for the mass ratios. If we repeat this analysis usingy = x0,1 in (11), we obtain meaningless
finite-size estimates, with even negative mass ratios.

The expected values appearing in table 1 would be obtained by taking the limitX→∞.
However, for justX = 14 the worst finite-size estimate of these ratios deviates by only 9%
from the conjectured value. The massive phase appearing at1 = 0 is also in agreement
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Table 1. Finite-size estimates for the lowest mass ratios obtained from (12). The masses are
obtained in the limitX→∞.

1 = 1
2 1 =

√
2

2

X m2/m1 m3/m1 m2/m1 m3/m1

6 2.832 2.503 3.828 3.102
10 2.260 2.190 2.548 2.429
14 2.117 2.094 2.183 2.170

Conjectured 2 2 2 2

with the results of Strong and Millis [4] based on the bosonization approach in a slightly
different model where1 = 1 in (6).

Our results indicate a twofold-degenerate single massM, plus a continuum starting at
2M.

In the case of a single chain, the relevant perturbations, that do not destroy the U(1)
symmetry, depending on the value of1, also produce beyond these masses bound states as
in the sine–Gordon theory.

The phase diagram for arbitrary values ofJ⊥ and1 could be estimated from a direct
calculation of the gap. However, our results would be very poor since such calculations
require much larger lattice sizes. An alternative approach via exploring the conformal
invariance in the massless phase of the phase diagram is possible. Our finite-size studies,
based on conformal invariance [20–22], show that the massless phase exhibited by the
model, whenJ⊥ 6= 0, is ruled by a Gaussian-like field theory withc = 1 and dimensions
xn,m (n,m ∈ Z) as in (7), but withxp depending continuously on1 andJ⊥. As an example,
the dimensionsxn,0 are obtained from the bulk limit of the sequence

xn,0(L) = E(0)n (L)− E(0)0 (L)

E
(1)
0 (L)− E(0)0 (L)

(13)

whereE(k)n (L) is the lowest eigenenergy in the sector with U(1) chargen = ∑ij S
z
i,j and

momentum(2π/L)k (k = 0, 1, . . .).
A possible way to estimate the boundary of the Gaussian phase, which proved to be

very effective in earlier applications [20, 32], is obtained by exploring the fact that due to
(7) we must havex2,0/x1,0 = 4 over the whole massless Gaussian phase. Even for small
lattices, if we are inside the massless phase this quotient is very close to 4 and shows large
variations once we leave the massless phase. If we assume as a finite-size estimate of the
massless phase the points where 4> x2,0(L)/x1,0(L) > 3.98, then the estimates for the
phase diagram in the plane(J⊥,1) are as shown in figure 1, for lattices sizesL = 6–12.
On considering instead of 3.98 the value 3.985, only a small change in the finite-size curves
occurs. The points on the left of these curves satisfy the above inequality and are in the
massless phase. Apart from finite-size effects which are large nearJ⊥ ≈ 0, since there
is a crossover to the two decoupled chains, we see from this figure that, asL → ∞, the
lower part of the asymptotic curve tends to stick on theJ⊥ = 0 axis. This is in qualitative
agreement with our earlier analysis, which indicates a massless phase for1 6 0. In the
Gaussian phase, forJ⊥ 6= 0, our results show that as1 increases the exponentη = 2x1,0

governing the correlation function〈Sx(r)Sx(0)〉 ∼ r−η increases up to 1/4. In figure 2
we show, for lattice sizesL = 6–12, the points in the plane(1, J⊥) where our finite-size
estimates reach the value 2x1,0 = η = 1/4. The points on the left of these curves satisfy
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Figure 1. Finite-size estimates for the phase diagram of (4) for lattice sizesL = 6–12. The
points on the left of these curves satisfy the inequality 4> x2,0/x1,0 > 3.98.

Figure 2. Finite-size estimates for the phase diagram of (4). The curves, for lattice sizes
L = 6–12, are the points where 2x1,0(L) reaches the value 1/4.

the above inequality and are in the massless phase. The resemblance of figures 1 and 2
indicates that over the whole massless phase the operator associated with the1 perturbation
has dimensionx0,1 = 1/4x1,0. When this operator becomes relevant the massless phase is
destroyed. WhenJ⊥ → 0 the dimensionx0,1 tends toward the valueπ/(π − cos−11) used
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in (11). This is similar to the anisotropic spin-1 Heisenberg model [21, 22], where the
operator that destroys the Gaussian-like phase, producing the massive Haldane phase, also
has dimensionx0,1.

The massive Haldane phase in the spin-1 Heisenberg chain, although not having a long-
range order of Ńeel type, exhibits a hidden order characterized by alternating signs in the
successive nonzero spins (take for example, theSz-basis). This nonlocal order produces a
nonzero value of the string correlation function [33–36]:

Oz(j) =
〈
Sz1 exp

(
iπ

j−1∑
k=1

Szk

)
Szj

〉
(14)

where theSz are spin-1 Pauli matrices. Following [12] we can try to interpret the ladder
Hamiltonian (4) as an effective spin-1 chain. In this case we should consider in (14) the
combinationSzk = Szk,1+ Szk+1,2 (k = 1, 2, . . .).

Figure 3. The string correlation functionOz(L/2), given in (14), as a function of1 for several
lattice sizes, together with the extrapolated values. These values are calculating by takingJ⊥ = 1
in (4).

In figure 3 we show forJ⊥ = 1.0 the finite-size estimates of (14) atj = L/2,
together with the extrapolated results. The extrapolation was done by using the alternating-ε

algorithm [37] which is a variant of of the VBS method [38], and the error bars are of the
same size as the symbol× used in the figure. We clearly see that for1 >∼ −0.8 the string
correlation function is nonzero like in the Haldane phase of the spin-1 single chain. In
figure 4 we show for the ladder Hamiltonian (4) withL = 10 the values ofOz(L/2) for
several values ofJ⊥. Apart from finite-size effects this figure indicates the same type of
nonlocal order in the massive phase of (4) as in the Haldane phase of the spin-1 Heisenberg
chain.

For completeness we also considered the anisotropic version of the extended ladder
model introduced by White [12]. In this Hamiltonian (see figure 5) we include in (4) a
ferromagnetic interaction along the diagonal:

H = H‖ +H⊥ +H/ (15)
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Figure 4. The string correlation functionOz(L/2) for the Hamiltonian (4) with lattice size
L = 10, as a function of1 andJ⊥.

Figure 5. Schematic interactions of the Hamiltonian given in (15).

where

H/ = −J/
L∑
i=1

(Sxi,1S
x
i+1,2+ Syi,1Syi+1,2+ Szi,1Szi+1,2). (16)

This Hamiltonian whenJ/ → ∞ is precisely the spin-1 anisotropic Heisenberg chain,
since the singlet states of the spins coupled byJ/ have infinite energy. White showed [12]
numerically that the isotropic chain(J⊥ = 1,1 = 1) does not undergo any phase transition
asJ/ is varied fromJ/ = ∞ to J/ = 0, which implies that the massive Haldane phase of
the spin-1 chain and the massive phase of the isotropic ladder are identical.

Our results show again a Gaussian-like phase for the Hamiltonian (15), which is
destroyed once the operator with dimensionx0,1 becomes relevant. In figure 6 we also
show for J⊥ = 1 the finite-size estimates of the phase diagram obtained by imposing
2x1,0(L) = 1/4, like in figure 2. This figure shows that atJ/ = 0 the massive phase starts
at 1 ≈ −0.55, in agreement with figure 2, but forJ/ → ∞ the massive phase starts at
1 ≈ 0, in agreement with the anisotropic spin-1 chain [20–22, 39].

In conclusion, our results show that like the spin-1 Heisenberg chain the anisotropic spin-
1/2 Heisenberg ladder has massless phases governed by a Gaussian-likec = 1 conformal
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Figure 6. Finite-size estimates for the phase diagram of (15). The curves, for lattice sizes
L = 6–12, are the points where 2x1,0(L) = 1/4.

field theory. In all of these models the operator with zero vorticity and spin-wave number
1 yields the massive phase once it becomes relevant.
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